Disclaimer

SainsdanSukan does not give any warranty on accuracy, completeness, functionality, usefulness or other assurances as to the content appearing in this blog. MatriXwoo2 disclaims all responsibility for any losses, damage to property or personal injury suffered directly or indirectly from reliance on such information.
Memaparkan catatan dengan label Biomekanik. Papar semua catatan
Memaparkan catatan dengan label Biomekanik. Papar semua catatan

Ahad, 8 Januari 2017

Jaringan Menakjubkan Mohd Faiz Menepati Hukum Newton Ketiga




Keunikan jaringan Mohd Faiz Subri yang disifatkan melanggar hukum fizik oleh banyak pihak adalah tidak benar, sebaliknya jaringan itu menepati  Hukum Gerakan Newton Ketiga.

Hukum Pergerakan Ketiga Newton : Setiap daya tindakan, terdapat satu daya tindak balas yang mempunyai magnitud sama dan bertindak pada arah yang bertentangan juga dikenali sebagai hukum action and reaction.

F(action)  =  - F(reaction)

Faiz menendang bahagian sisi kiri bola menggunakan bahagian luar kaki kanannya untuk melencongkan bola itu sehingga menghasilkan satu daya yang dikenali sebagai kesan Magnus.

Lencongan bola yang berlaku adalah disebabkan kesan magnus yang terhasil apabila bola sepakan berputar dan mewujudkan satu daya yang mengikut dan melawan pergerakan bola.

Teknik sebenar yang digunakan Mohd Faiz ketika mengambil sepakan percuma tersebut ialah curveball, hasil daripada latihan dan memahami mekanisme pergerakan bola yang beliau inginkan.

Semoga Mohd Faiz akan memenangi jaringan cantiknya yang akan diumum pada Anugerah Bola Sepak FIFA di Zurich, Switzerland esok…..ameen

Sabtu, 1 Oktober 2016

Do you know your Body Type?


I have always come across people who think that any diet can be used to lose weight/maintain weight/gain weight, which is not the case. There are different body types according to which a diet is made; of course individual health history is also important. In fact even gym workouts are based on this different body types.



The Three Body Types are:

Ectomorph - People with this body type are very thin in structure. They have small shoulders and light build.  Their metabolism is way too high thus; they find it hard to gain weight. In fact the metabolism is so high that the body burns fat for sure but even uses muscle as a source of energy, thus making them look so thin. These are people who despite eating a lot do not gain weight. Their tendency to lose weight is more than gaining.

Triats of Ectomorph:
  • Small Shoulder
  • Thin Body Frame
  • Under weight/skinny appearance
  • Long limbs
  • Fast metabolism thus very low fat
  • Hard to gain muscles

MESOMORPH - The most athletic body is this one, where in they have large body structure. They gain muscle and lose fat very easily. This body type has positives such as low body fat like ectomorph and large frame like endomorph. This is the kind of body everyone usually dreams of. But, again if not maintained well it’s no use having such a body type

Traits of a Mesomorph:
  • Shoulders are wide
  • Easily gain muscle
  • Lean body
  • Has less body fat
  • Small waist
  • Large frame

ENDOMORPH - This body type is the one which has more fat. People with this body type have short limbs and gain weight very easily. Appear large in size. They find it hard to lose weight in spite of working on their diet and workout.

Traits of Endomorph:
  • Broad Shoulders
  • Appear large
  • Gain fat easily
  • Metabolism is slow
  • Short limbs

Every body type has its own advantage and disadvantages. According to an individual’s health goal, we work towards it.

It is not necessary for a person to be of any one specific body type only. There is even a combination of the above body types like Endo-Mesomorph or Ecto-Mesomorph.

With the above information, you can figure out your own body type easily. But, it is not necessary that Endomorph cannot become a Mesomorph, With dedication, efforts and hard work anything is possible.

Rabu, 31 Ogos 2016

Mengaplikasi Hukum Newton Dalam Aktiviti Fizikal


Setiap pergerakan manusia ketika bergerak secara berobjektif seperti bersenam dan sukan spesifik boleh diintepretasi mengikut hukum gerakan Newton. Kaedah latihan fizikal adalah berlandaskan hukum inertia, pecutan dan daya tindakbalas.

Tidak mengira apa jua bentuk pergerakan sama ada pergerakan lurus, putaran pada paksi dan satah sagittal, frontal serta tranverse, segalanya termasuklah lajunya dan tangkasnya pergerakan dengan kesan graviti ke atas tubuh boleh ditafsir dengan hukum Newton.

Hukum Newton pertama menyatakan bahawa sesuatu objek akan kekal dalam keadaan asalnya, iaitu dalam keadaan pegun atau dalam keadaan halaju seragam jika tiada daya luar bertindak ke atas suatu objek : Gunakan aplikasi hukum Newton pertama ini untuk tingkatkan intensiti rutin senaman anda. Dengan mengurangkan kesan inertia (bahasa pasarnya ialah ‘cheating’) pada setiap fasa pergerakan, secara asasnya membantu mengurangkan risiko kecederaan dan menyebabkan penguncupan otot agonis, antagonis dan sinergis, pada titik yang sepatutnya. Ini akan menghasilkan kesan adaptasi otot dan tisu secara efektif dan optimum.

Hukum gerakan Newton kedua pula menyatakan bahawa kadar perubahan momentum adalah berkadar terus dengan daya paduan yang bertindak ke atas suatu objek pada arah yang sama dengan arah tindakan tersebut : Bermaksud, kita boleh bermain dengan variasi halaju dalam penambahan daya. Antara yang boleh dilakukan ialah tambahkan rintangan bendalir seperti angin dan air sebagai daya (intensiti) tambahan dalam rutin latihan anda, contohnya berenang melawan arus, berlari atau berjalan mendaki cerun bukit atau dengan alat treadmill beserta ‘inclination’.

Hukum gerakan Newton ketiga menyatakan bahawa untuk setiap daya tindakan, terdapat satu daya tindakbalas yang mempunyai magnitud sama dan bertindak pada arah yang bertentangan : Dapatkan intensiti dan halaju dengan sentuhan satah fizikal seperti lantai dan dinding untuk menghasilkan daya tindakbalas satah tersebut. Dengan ini, penguncupan otot akan berlaku dengan mantapnya. Kesan hukum Newton ketiga ini lebih signifikan dengan rutin latihan pliometrik atau ‘explosive’. Cuba lakukan pergerakan seperti Jump squat, anda akan terasa otot kaki lebih menguncup kerana perlu menyerap daya tindakbalas tambahan akibat graviti pada satah tersebut berbanding regular squat.

Pemahaman mudah mengenai hukum-hukum gerakan Newton ini sangat penting kerana boleh membantu anda mengelakkan plateau dan memahami fenomena yang berlaku disebalik setiap daya biomekanikal yang berlaku pada badan anda dan seterusnya dapat memperbaiki dan memantapkan lagi teknik yang sedia ada.


Isnin, 20 Jun 2016

Hukum Gerakan Newton


Setiap pergerakan manusia ketika bergerak atau secara berobjektif seperti bersenam dan sukan spesifik boleh diintepretasi mengikut hukum gerakan Newton. Kaedah latihan fizikal adalah berlandaskan hukum inertia, pecutan dan daya tindakbalas.

Tidak mengira apa jua bentuk pergerakan lurus atau putaran pada paksi dan satah sagittal, frontal serta tranverse, segalanya termasuklah lajunya dan tangkasnya pergerakan dengan kesan graviti ke atas badan boleh ditafsir dengan hukum gerakan Newton.

Hukum gerakan Newton pertama menyatakan bahawa sesuatu objek akan kekal dalam keadaan asalnya, iaitu dalam keadaan pegun atau dalam keadaan halaju seragam jika tiada daya luar bertindak ke atas suatu objek.

Gunakan aplikasi hukum Newton pertama ini untuk tingkatkan intensiti rutin senaman anda. Dengan mengurangkan kesan inertia (bahasa pasarnya ialah ‘cheating’) pada setiap fasa pergerakan, secara asasnya membantu mengurangkan risiko kecederaan dan menyebabkan penguncupan otot agonis, antagonis dan sinergis, pada titik yang sepatutnya. Ini akan menghasilkan kesan adaptasi otot dan tisu secara efektif dan optimum.

Hukum gerakan Newton kedua pula menyatakan bahawa kadar perubahan momentum adalah berkadar terus dengan daya paduan yang bertindak ke atas suatu objek pada arah yang sama dengan arah tindakan tersebut.

Bermaksud di sini, kita boleh bermain dengan variasi halaju dalam penambahan daya. Antara yang boleh dilakukan ialah tambahkan rintangan bendalir seperti angin dan air sebagai daya (intensiti) tambahan dalam rutin latihan anda, contohnya berenang melawan arus, berlari atau berjalan mendaki cerun bukit atau dengan alat treadmill beserta ‘inclination’.

Hukum gerakan Newton ketiga menyatakan bahawa untuk setiap daya tindakan, terdapat satu daya tindakbalas yang mempunyai magnitud sama dan bertindak pada arah yang bertentangan.

Dapatkan intensiti dan halaju dengan sentuhan satah fizikal seperti lantai dan dinding untuk menghasilkan daya tindak balas satah tersebut. Dengan ini, penguncupan otot akan berlaku dengan mantapnya. Kesan hukum Newton ketiga ini lebih signifikan dengan rutin latihan pliometrik atau ‘explosive’. Cuba lakukan pergerakan seperti Jump squat, anda akan terasa otot kaki lebih menguncup kerana perlu menyerap daya tindakbalas tambahan akibat graviti pada satah tersebut berbanding Regular squat.


Pemahaman mudah mengenai hukum-hukum gerakan Newton ini sangat penting kerana boleh membantu anda mengelakkan plateau dan memahami fenomena yang berlaku disebalik setiap daya biomekanikal yang berlaku pada badan anda dan seterusnya dapat memperbaiki dan memantapkan lagi teknik yang sedia ada.

Selasa, 17 Mei 2016

Biomechanics


Biomechanics is the science concerned with the internal and external forces acting on the human body and the effects produced by these forces.

Kinetics is a study of the cause of motion, namely forces and torques e.g. forces between the feet and the ground when jumping and Kinematics is the study of movement with reference to the amount of time taken to carry out the activity.

Distance and displacement
Distance (length of the path a body follows) and displacement (length of a straight line joining the start and finish points) are quantities used to describe a body's motion. e.g. in a 400m race on a 400m track the distance is 400 metres but their displacement will be zero metres (start and finish at the same point).

Speed and velocity
Speed and velocity describe the rate at which a body moves from one location to another. Average speed of a body is obtained by dividing the distance by the time taken and average velocity is obtained by dividing the displacement by the time taken e.g. a swimmer in a 50m race in a 25m length pool who completes the race in 71 seconds - distance is 50m and displacement is 0m (swimmer is back where they started) so speed is 50/71= 0.70m/s and velocity is 0/71=0 m/s.
  • Speed and Velocity = distance travelled ÷ time taken
Acceleration
Acceleration is defined as the rate at which velocity changes with respect to time.
  • average acceleration = (final velocity - initial velocity) ÷ elapsed time
From Newton's 2nd law:
  • Force = Mass x Acceleration
  • Acceleration = Force ÷ Mass
If the mass of a sprinter is 60kg and the force exerted on the starting blocks is 600N then acceleration = 600 ÷ 60 = 10 msec²

Acceleration due to gravity
Whilst a body is in the air it is subject to a downward acceleration, due to gravity, of approximately 9.81m/s²

Vectors and scalars
Distance and speed can be described in terms of magnitude (amount) and are known as scalars. Displacement, velocity and acceleration require magnitude and direction and are known as vectors.

Components of a vector


Let us consider the horizontal and vertical components of velocity of the shot put.


indicates the angle of release of the put ball is 35° and the velocity at release as 12 metres/second.
  • Vertical component Vv = 12 x sin 35° = 6.88 m/sec
  • Horizontal component Vh = 12 x cos 35° = 9.82 m/sec
Let us now consider the distance the put ball will travel horizontally (its displacement).

Distance (D) = ((v² × sinØ × cosØ) + (v × cosØ × sqrt((v × sinØ)² + 2gh))) ÷ g

Where v = 12, Ø = 35, h = 2m (height of the shot above the ground at release) and g = 9.81
  • D = ((12² × sin35 × cos35) + (12 × cos35 × sqrt((12 × sin35)² + 2 x 9.81 x 2))) ÷ 9.81
  • D = 16.22m
The time of flight of the shot can be determined from the equation:
  • Time of flight = Distance (D) ÷ velocity (Vh)
  • Time of flight = 16.22 ÷ 9.82 = 1.65 seconds
Uniformly accelerated motion
When a body experiences the same acceleration throughout an interval of time, its acceleration is said to be constant or uniform and the following equations apply:
  • Final velocity = initial velocity + (acceleration x time)
  • Distance = (initial velocity x time) + (½ x acceleration x time²)
Moment of force (torque)
The moment of force or torque (Ï„) is defined as the application of a force at a perpendicular distance to a joint or point of rotation.

Torque (τ = rFsin θ ) depends on three quantities:
  • the length of the lever arm connecting the axis to the point of force application (r)
  • the force applied (F)
  • the angle between the force vector and the lever arm (sin θ)
Angular Kinematics
(i) Angular distance and displacement 
When a rotating body moves from one position to another, the angular distance through which it moves is equal to the length of the angular path. The angular displacement that a rotating body experiences is equal to the angle between the initial and final position of the body. 
Angular movement is usually expressed in radians where 1 radian = 57.3°
(ii) Angular speed, velocity and acceleration
  • Angular speed = angular displacement ÷ time
  • Angular velocity = angular displacement ÷ time
  • Angular acceleration = (final angular velocity - initial angular velocity) ÷ time
(iii) Angular Momentum
Angular momentum is defined as: angular velocity x moment of inertia.

The angular momentum of a system remains constant throughout a movement provided nothing outside of the system acts with a turning moment on it. This is known as the Law Conservation of Angular Momentum. (e.g. if a skater, when already spinning, moves their arms out to the side, then the rate of spin will change but the angular momentum will stay the same).

Linear Kinetics
Kinetics is concerned with what causes a body to move.
Momentum, inertia, mass, weight and force
  • Momentum: mass x velocity
  • Inertia: the reluctance of a body to change whatever it is doing
  • Mass: the quantity of matter of which a body is composed of - not affected by gravity - measured in kilograms (kg)
  • Weight: force due to gravity -9.81m/s²
  • Force: a pushing or pulling action that causes a change of state (rest/motion) of a body is proportional to mass x acceleration. It is measured in Newtons (N) where 1N is the force that will produce an acceleration of 1 m/s² in a body of 1kg mass
The classification of external or internal forces depends on the definition of the 'system'. In biomechanics, the body is seen as the 'system' so any force exerted by one part of the system on another part of the 'system' is known as an internal force all other forces are external.

Newton's Laws of Motion
  • First Law: Every body continues in its state of rest or motion in a straight line unless compelled to change that state by external forces exerted upon it.
  • Second Law: The rate of change of momentum of a body is proportional to the force causing it and the change takes place in the direction in which the force acts
  • Third Law: To every action there is an equal and opposite reaction OR for every force that is exerted by one body on another there is an equal and opposite force exerted by the second body on the first
Newton's law of gravitation
  • Any two particles of matter attract one another with a force directly proportional to the product of their masses and inversely proportional to the square of the distance between them. 
Kinetic Energy and Power
Kinetic energy is the mechanical energy possessed by a moving object.

Kinetic Energy = ½ x mass x velocity² (joules)

Power is defined as the rate at which energy is used or created from other forms
  • Power = energy used ÷ time taken
  • Power = (force x distance) ÷ time taken
  • Power = force x velocity 
Angular Kinetics
Translation and couple
A force that acts through the centre of a body result in movement (translation). A force whose line of action which does not pass through the body's centre of gravity is called an eccentric force and results in movement and rotation.

Example - if you push through the centre of an object it will move forward in the direction of the force. if you push to one side of the object (eccentric force) it will move forward and rotate.

A couple is an arrangement of two equal and opposite forces that cause a body to rotate.

Levers
A lever is a rigid structure, hinged at one point and to which forces are applied at two other points. The hinge is known as the fulcrum. The two forces forces that act on the lever are the weight that opposes movement and a force that causes movement. For more details see the page on Levers.

Bernoulli Effect
If an object has a curved top and flat bottom (e.g. the wing of an aircraft), the air will have further to travel over the top of the wing than the bottom. For the two airflows to reach the rear of the wing at the same time the air flowing over the top of the wing will have to flow faster resulting in less pressure above the wing (air is thinner) than below it and the aircraft will lift. This is known as the Bernoulli effect.

Isnin, 8 April 2013

CENTRIPETAL FORCE



Centripetal force is define as a force that keeps a body moving with a uniform speed along a circular path and its directed along the radius towards the center. Its direction is the same direction of the centripetal acceleration. If the centripetal force suddenly stop to act on a body in the circular motion, the body flies off in a straight line with constant tangential speed. For a circular motion to occur, there must be a constant force acting on the a body pushing it toward the centre of the circular path, that is centripetal force.

COURCE OF CENTRIPETAL FORCE
To make a body or object move in circular path, there must be source of centripetal force to occur. For example, a planet orbiting the sun, the centripetal force is supplied by gravitational force. For non-circular orbits or trajectories, only the component of gravitational force directed orthogonal to the path (toward the center of the osculating circle) is termed centripetal; the remaining component acts to speed up or slow down the satellite in its orbit. For an object swinging around on the end of a rope, the internal tensile stress in the centripetal force an another example is for an electron orbiting the atom, it is electrical. There are other example that apply centripetal force in daily life that is when we drive car, train moves, people play the ferris wheel and many more.


FORMULA
The magnitude of the centripetal force on an object of mass m moving at tangential speed, v along a path with radius, r is: 
F = mac = mv²/r

Where uc is the centripetal acceleration. The direction of the force is to word the center of the circle in which the object is moving or the osculating circle, the circle that best fits the local path of the object, if the path in not circular. The speed in the formula is squared, so twice the speed needs four times the force. The inverse relationship with the radius of curvature shows that half the radial distance requires twice the force. This force is also some times written in terms of the angular velocity, ω of the object about the center of the circle:  
F = mω²


APPLICATION OF CENTRIPETAL FORCE IN SPORTS
  • Swing Hammer
In order swing the hammer in a circle, the thrower must be able to exert a sufficient centripetal force on the chain. Notice how the angle of his leg and foot enable him to do this. Hence when athlete throw the metal ball, they not fall in the ground.

  • Car Racing
We can see that centripetal force is applied in car racing. The extreme banking of curves on a race trick allows the cars to maintain high speeds through the turn. This force can avoid and reduce the skidding and friction force between the car and the road.




  • Ice Skating
Ice skating provides sample opportunity to test variations of centripetal force. During pairs skating death spiral spin, for instance, one skater acts as the center of the circle while his partner rotates around him. He provides tension force, which acts upon his partner to initiate the centripetal force. The faster his partner spins, the more force is needed to keep her moving in a circle. His partner’s inertia, or tendency to resist a change in motion, is based on her density; the higher the density, the greater the inertia. This move is best performed with a stronger and heavier center or pivot point to maintain the centripetal acceleration.


Sabtu, 23 Jun 2012

Posisi dan Pergerakan



Terdapat dua jenis posisi di dalam pergerakan iaitu kedudukan biasa dan kedudukan anatomi. Kedudukan biasa ialah kedudukan ketika berdiri lurus atau tegak dan tangan rapat di sisi badan sementara kedudukan anatomi pula ialah kedudukan ketika berdiri lurus atau tegak dan tapak tangan menghala ke hadapan, kaki kanan dan kiri terbuka menghala keluar.












Jenis-jenis pergerakan terdiri daripada 4 jenis iaitu: 


Jenis-jenis pergerakan terdiri daripada 4 jenis iaitu: (i) Pergerakan Linear – pergerakan yang meibatkan sesaran menegak, mendatar atau melengkung pada arah dan kelajuan yang sama contohnya, meluncur dan mengelungsur. 




(ii) Putaran – Mengikut lengkuk bulatan mengelilingi satu putaran contohnya, supinasi dan pronasi. 




(iii) Bersudut – Pergerakan yang lurus tetapi masih berkeadaan bersudut. Pergerakan ini melibatkan seluruh bahagian bergerak dari satu kedudukan ke satu kedudukan yang lain contohnya, fleksi, ekstensi. abduksi dan sirkumduksi. 



(iv) Khusus – Pergerakan yang tiada had seperti dorsi fleksi, plantar fleksi, eversi, inversi dan depresi.














\




Inversion


Deskripsi Pergerakan Asas

Pergerakan asas bergantung kepada keupayaan mekanikal. Keupayaan mekanikal adalah hasil daripada pergerakan sendi. Contoh-contoh pergerakan asas adalah:

Fleksi, Ekstensi, Hiperektensi, Abduksi, Aduksi, Rotasi, Elevasi, Sirkumduksi, Supinasi, Pronasi, Inversi, Eversi, Drosi Fleksi dan Plantar Fleksi.









Jumaat, 22 Jun 2012

Sistem Tuas

Sistem Mekanikal Jasad
Sistem mekanikal merujuk tenaga kinetik dan keupayaan yang dihasilkan oleh sistem sendi dan kumpulan otot manusia. Untuk melakukan pergerakan yang stabil, sistem sendi dan otot perlu bertindak untuk menggerakan sesuatu jasad.

Sistem Tuas
Tuas adalah satu rod yang boleh dipusingkan pada satu titik tetap. Keberkesanan tuas adalah bergantung kepada beberapa faktor iaitu daya yang dikenakan (D), kedudukan beban (B) dan fulkrum (F).

Empat komponen tuas ialah: daya sebagai penguncupan otot; palang sebagai tulang; fulkrum sebagai sendi dan beban sebagai rintangan. Tuas dikelaskan kepada tiga jenis iaitu:

Tuas Kelas Pertama 
Berfungsi untuk menjaga keseimbangan, contohnya mengangkat pemberat.









Tuas Kelas Kedua 
Berfungsi untuk menghasilkan daya gerakan contohnya, kedudukan kaki semasa di dalam 
keadaan bersedia untuk memulakan lompatan.







Tuas Kelas Ketiga 
Tuas ini mempunyai kelajuan yang tinggi dan julat pergerakan yang luas contohnya gerakan 
tangan sewaktu melemparkan bola.






Featured post

Metos Makan Waktu Malam

  Makan malam buat anda gemuk? Tiada bukti secara saintifik  membuktikan kerap makan di waktu malam akan mengakibatkan seseorang itu mengala...

Related Posts Plugin for WordPress, Blogger...