Disclaimer

MatriXwoo2 does not give any warranty on accuracy, completeness, functionality, usefulness or other assurances as to the content appearing in this blog. MatriXwoo2 disclaims all responsibility for any losses, damage to property or personal injury suffered directly or indirectly from reliance on such information.

Rabu, 26 Ogos 2020

Sympathetic & Parasympathetic

 

The preganglionic motor neurons of the sympathetic system (shown in black) arise in the spinal cord. They pass into sympathetic ganglia which are organized into two chains that run parallel to and on either side of the spinal cord.

The preganglionic neuron may do one of three things in the sympathetic ganglion:

synapse with postganglionic neurons (shown in white) which then reenter the spinal nerve and ultimately pass out to the sweat glands and the walls of blood vessels near the surface of the body.

pass up or down the sympathetic chain and finally synapse with postganglionic neurons in a higher or lower ganglion

leave the ganglion by way of a cord leading to special ganglia (e.g. the solar plexus) in the viscera. Here it may synapse with postganglionic sympathetic neurons running to the smooth muscular walls of the viscera. However, some of these preganglionic neurons pass right on through this second ganglion and into the adrenal medulla. Here they synapse with the highly-modified postganglionic cells that make up the secretory portion of the adrenal medulla.

The neurotransmitter of the preganglionic sympathetic neurons is acetylcholine (ACh). It stimulates action potentials in the postganglionic neurons.

The neurotransmitter released by the postganglionic neurons is noradrenaline (also called norepinephrine).

The action of noradrenaline on a particular gland or muscle is excitatory is some cases, inhibitory in others. (At excitatory terminals, ATP may be released along with noradrenaline.)

  • The release of noradrenaline
  • stimulates heartbeat
  • raises blood pressure
  • dilates the pupils
  • dilates the trachea and bronchi
  • stimulates the conversion of liver glycogen into glucose
  • shunts blood away from the skin and viscera to the skeletal muscles, brain, and heart
  • inhibits peristalsis in the gastrointestinal (GI) tract
  • inhibits contraction of the bladder and rectum
  • and, at least in rats and mice, increases the number of AMPA receptors in the hippocampus and thus increases long-term potentiation (LTP).

In short, stimulation of the sympathetic branch of the autonomic nervous system prepares the body for emergencies: for "fight or flight" (and, perhaps, enhances the memory of the event that triggered the response).

Activation of the sympathetic system is quite general because

  • a single preganglionic neuron usually synapses with many postganglionic neurons;
  • the release of adrenaline from the adrenal medulla into the blood ensures that all the cells of the body will be exposed to sympathetic stimulation even if no postganglionic neurons reach them directly.

The Parasympathetic Nervous System

The main nerves of the parasympathetic system are the tenth cranial nerves, the vagus nerves. They originate in the medulla oblongata. Other preganglionic parasympathetic neurons also extend from the brain as well as from the lower tip of the spinal cord.

Each preganglionic parasympathetic neuron synapses with just a few postganglionic neurons, which are located near — or in — the effector organ, a muscle or gland. Acetylcholine (ACh) is the neurotransmitter at all the pre- and many of the postganglionic neurons of the parasympathetic system. However, some of the postganglionic neurons release nitric oxide (NO) as their neurotransmitter.

The Nobel Prize-winning physiologist Otto Loewi discovered (in 1920) that the effect of both sympathetic and parasympathetic stimulation is mediated by released chemicals. He removed the living heart from a frog with its sympathetic and parasympathetic nerve supply intact. As expected, stimulation of the first speeded up the heart while stimulation of the second slowed it down.

Loewi found that these two responses would occur in a second frog heart supplied with a salt solution taken from the stimulated heart. Electrical stimulation of the vagus nerve leading to the first heart not only slowed its beat but, a short time later, slowed that of the second heart also. The substance responsible was later shown to be acetylcholine. During sympathetic stimulation, adrenaline (in the frog) is released.

  • Parasympathetic stimulation causes
  • slowing down of the heartbeat (as Loewi demonstrated)
  • lowering of blood pressure
  • constriction of the pupils
  • increased blood flow to the skin and viscera
  • peristalsis of the GI tract

In short, the parasympathetic system returns the body functions to normal after they have been altered by sympathetic stimulation. In times of danger, the sympathetic system prepares the body for violent activity. The parasympathetic system reverses these changes when the danger is over.

The vagus nerves also help keep inflammation under control. Inflammation stimulates nearby sensory neurons of the vagus. When these nerve impulses reach the medulla oblongata, they are relayed back along motor fibers to the inflamed area. The acetylcholine from the motor neurons suppresses the release of inflammatory cytokines, e.g., tumor necrosis factor (TNF), from macrophages in the inflamed tissue.

Although the autonomic nervous system is considered to be involuntary, this is not entirely true. A certain amount of conscious control can be exerted over it as has long been demonstrated by practitioners of Yoga and Zen Buddhism. During their periods of meditation, these people are clearly able to alter a number of autonomic functions including heart rate and the rate of oxygen consumption. These changes are not simply a reflection of decreased physical activity because they exceed the amount of change occurring during sleep or hypnosis. 

Ahad, 23 Ogos 2020

REGANGAN

Masihkah anda ingat zaman sekolah dulu kita dididik dengan regangan statik sebelum memulakan aktiviti sukan dalam subjek Pendidikan Jasmani. Ianya masih diamalkan oleh cikgu tangkap muat subjek ini. 

Sehingga kini kita masih kekurangan cikgu yang boleh mengajar Pendidikan Jasmani dan Kesihatan (PJK) ini mungkin disebabkan kekurangan peruntukan atau sesetengahnya menganggap subjek ini hanya membuang masa guru-guru sebjek teras untuk menghabiskan silibus! 

Tahukah anda, terdapat lebih 100 kajian menunjukkan regangan statik sebelum aktiviti sukan atau senaman menurunkan prestasi kita. 

Ia mengurangkan kekuatan otot (strength) kita sekitar 5.5 peratus dan menjadi lebih teruk jika dilakukan lama. Ia mengurangkan power sebanyak 2 peratus. Ia juga mengurangkan kekuatan eksplosif kita sekitar 3%. Disebabkan itu, jangan buat regangan statik sebelum aktiviti senaman anda. Apa? Anda masih buat? 

Secara amnya regangan memperbaik pengaliran darah. Akan tetapi kajian menunjukkan apabila dilakukan lebih daripada 60 saat, ia mengurangkan pengaliran darah, membentuk ischemia dan menyebabkan pengumpulan asid laktik. 

Dalam bahasa mudah boleh merosakkan otot dan tendon anda apabila dibuat lebih daripada 60 saat.Kalau tak boleh buat, nak buat apa sebelum senaman? 

Anda boleh buat regangan juga tapi dalam bentuk dinamik iaitu dengan pergerakan. Ia boleh dijadikan sebagai aktiviti memanaskan badan jika anda tak buat sesi memanaskan badan yang lain.

Featured post

Metos Makan Waktu Malam

  Makan malam buat anda gemuk? Tiada bukti secara saintifik  membuktikan kerap makan di waktu malam akan mengakibatkan seseorang itu mengala...

Related Posts Plugin for WordPress, Blogger...